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Abstract. Motivated by impurity-induced magnetic ordering phenomena in spin-gap materials like
TlCuCl3 , we develop a mean-field theory for strongly disordered antiferromagnets, designed to capture the
broad distribution of coupling constants in the effective model for the impurity degrees of freedom. Based
on our results, we argue that in the presence of random magnetic couplings the conventional first-order
spin-flop transition of an anisotropic antiferromagnet is split into two transitions at low temperatures,
associated with separate order parameters along and perpendicular to the field axis. We demonstrate the
existence of either a bicritcal point or a critical endpoint in the temperature–field phase diagram, with the
consequence that signatures of the spin flop are more pronounced at elevated temperature.

PACS. 75.50.Ee Antiferromagnetics – 75.30.Hx Magnetic impurity interactions – 75.50.Lk Spin glasses
and other random magnets

1 Introduction

The interplay of magnetism and disorder is a fascinat-
ing field of research in condensed matter physics. Vari-
ous non-trivial low-temperature phases, like spin glasses,
Bose glasses, random singlet phases etc., and associated
phase transitions have been studied in both theory and
experiment. A particularly interesting manifestation of
quantum effects is impurity-induced magnetism in quan-
tum paramagnets: The starting point is a Mott insula-
tor with a finite spin gap which separates elementary
spin excitations from the spin singlet ground state; exam-
ples are SrCu2O3, CuGeO3, PbNi2V2O8, SrCu2(BO3)2,
KCuCl3, or TlCuCl3. As demonstrated in recent experi-
ments [1–8], non-magnetic impurities, replacing magnetic
ions in such quantum paramagnets, can induce effective
magnetic moments. These impurity-induced moments re-
veal themselves in a Curie-like behavior of the uniform sus-
ceptibility, χ ∝ C/T , at intermediate temperatures. Re-
markably, in the presence of three-dimensional couplings
these induced moments can order at sufficiently low tem-
peratures, thus changing the spin-gapped paramagnetic
ground state of the pure compound into an magnetically
long-range ordered state upon doping.

On the theoretical side, the appearance of effective mo-
ments upon doping vacancies into the spin system is well
understood in principle. It occurs in systems with con-
fined spinons, i.e., elementary S = 1 excitations; for spin
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1/2 systems it is best visualized in terms of broken sin-
glet bonds where one spin is replaced by a vacancy. The
liberated spin 1/2 is confined to the vacancy at low en-
ergies, resulting in an effective spin 1/2 moment [9,10].
(In contrast, in host systems with elementary S = 1/2
excitations, i.e., deconfined spinons, no moments are gen-
erated by introducing vacancies.) This theoretical picture
has been supported by various numerical studies, in par-
ticular on spin chain [11] and ladder systems [12–14].

A number of theoretical works also addressed
impurity-induced antiferromagnetic ordering. On the one
hand, numerical simulations on finite-size systems of spin
gap magnets containing impurities studied signatures of
magnetic ordering [14–17]. On the other hand, analyt-
ical approaches [18–21] typically start from an effective
spin-1/2 model involving the impurity-induced moments
�Si only:

Heff =
∑

ij

Jij
�Si · �Sj , (1)

where the interaction Jij between two impurity moments
depends on their distance rij as Jij ∝ exp(−rij/ξ), where
ξ is the magnetic correlation length of the host material.
Due to the random locations of the impurities the system
shows a broad distribution of coupling values Jij . Further-
more, on bipartite lattices the sign of Jij will alternate
as function of the Manhattan distance between i and
j. This implies that classically all bonds can be satis-
fied with a Neél-type arrangement of the effective mo-
ments. In other words, equation (1) defines a strongly
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disordered non-frustrated quantum magnet. Real-space
renormalization group studies [20,21] indicate that the
ground state of the model (1) with quantum spins 1/2
shows long-range order for any concentration of impu-
rity moments; this is supported by numerical simulations
of vacancy-doped quantum paramagnets with confined
spinons, which display magnetic order up to the per-
colation threshold [14–17]. Thus, although the systems
under consideration are long-range-ordered antiferromag-
nets, their properties can be expected to be strongly differ-
ent from that of antiferromagnets without quenched dis-
order, due to the broadly distributed Jij .

The purpose of this paper is to introduce a gener-
alized mean-field theory, which takes into account the
broad distribution of coupling constants in equation (1).
The central idea is to parameterize the spins according to
their coupling strength to the environment, i.e., by their
sum of coupling constants to all other spins, J̄ , see equa-
tion (2) below. For each J̄ a separate mean-field param-
eter will be introduced, leading to integral equations re-
placing the standard self-consistency relations. Although
such a mean-field theory misses certain aspects of disorder
physics, like localization phenomena, we will demonstrate
that it captures various distinct properties of magnets de-
scribed by equation (1). For instance, the overall behavior
of the order parameter as function of temperature is sig-
nificantly different from non-disordered magnets and from
conventional mean-field theory. In particular, we discuss
the physics in an external field the presence of a mag-
netic anisotropy, relevant for most real materials. Here, a
spin-flop transition is expected to occur for fields paral-
lel to the easy axis, which indeed has been observed in
TlCu1−xMgxCl3 [7]. We argue that strong disorder leads
to an interesting temperature evolution of the spin-flop
physics: at low temperature the transition is generically
split into two (with at least one of them being continu-
ous), whereas at elevated temperature a single first-order
transition is restored.

The bulk of the paper is organized as follows: in Sec-
tion 2 we describe our generalized mean-field theory, to-
gether with the numerical procedure to solve the mean-
field equations. Section 3 discusses the symmetries and
possible phases of the model in the presence of a field par-
allel to the easy axis, and presents temperature–field phase
diagrams obtained from the mean-field theory. In Section 4
we take a closer look at the phase transitions, in particular
at the spin-flop transition. A comparison to experiments
and available numerical results for vacancy-doped mag-
nets is given in Section 5. A brief outlook concludes the
paper.

2 Mean-field theory

2.1 Parameterization

In standard mean-field theory, the many-body problem is
reduced to one single-spin problem in an effective field.
Following this idea in the presence of disorder requires to
consider distinct effective fields for all spins. Physicswise,

we expect spins to behave differently if they have different
couplings to their environment; spins in a similar environ-
ment may behave in a similar fashion. This is the basis for
the main simplification of our mean-field theory: We will
parameterize the spins by the coupling sum J̄ , defined as

J̄i =
∑

j

Jij(−1)i−j+1 =
∑

j

|Jij |. (2)

Thus we replace the spin variables �Si by �S(J̄). The factor
(−1)i−j+1 accounts for the sublattice structure of the bi-
partite lattice, with (i− j) being the Manhattan distance,
and the second identity follows from the alternating sign
of the coupling Jij . With this definition, J̄i is the magni-
tude of the effective field on spin i in a perfectly ordered
antiferromagnetic state.

For a description of the magnetic interactions in terms
of the coupling sum, we introduce a probability distribu-
tion P (J̄) according to

P (J̄) =
1
N

∑

i

δ(J̄ − J̄i) (3)

where N is the number of spins. Further, we need an in-
teraction function f(J̄1, J̄2), defined as

f(J̄1, J̄2) =
1

NP (J̄1)P (J̄2)

∑

ij

|Jij |δ(J̄1−J̄i)δ(J̄2−J̄j) .

(4)

which is symmetric w.r.t. to J̄1 ↔ J̄2 and fulfills normal-
ization conditions

∫
dJ̄2P (J̄2)f(J̄1, J̄2) = J̄1 . (5)

With these definitions, a ferromagnetic Heisenberg model,
H = −∑

ij Jij
�Si · �Sj, takes the form

H = −N

∫
dJ̄1dJ̄2P (J̄1)P (J̄2)f(J̄1, J̄2)�S(J̄1)·�S(J̄2). (6)

Defining an effective field

�m(J̄) =
∫

dJ̄2P (J̄2)f(J̄ , J̄2)〈�S(J̄2)〉, (7)

the mean-field Hamiltonian reads

Hmf = −N

∫
dJ̄P (J̄)

[
�m(J̄) + �B

]
· �S(J̄), (8)

where we have included an external field �B.
For an antiferromagnet on a bipartite lattice different

mean fields are required for the two sublattices A and B,
which can become inequivalent in the presence of symme-
try breaking and a finite field. Using PA(J̄) = PB(J̄) =
P (J̄)/2, the effective field becomes

�mA,B(J̄) = ±
∫

dJ̄2P (J̄2)f(J̄ , J̄2)
〈�SA(J̄2)〉 − 〈�SB(J̄2)〉

2
.

(9)
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The corresponding mean-field Hamiltonian reads

Hmf = −N

2

∫
dJ̄P (J̄)

([
�mA(J̄) + �B

]
�SA(J̄)

+
[
�mB(J̄) + �B

]
�SB(J̄)

)
(10)

replacing (8).
In general, two angles are needed to specify the ori-

entation of a spin. In the following, we will exclusively
consider situations where H has a U(1) symmetry of rota-
tions about the z axis (see Sect. 3). Then we can describe
the orientation of a spin just by one angle, ϕ, between
spin and z axis; the angle in the xy plane can be fixed to
zero, positive (negative) values of ϕ on the A (B) sublat-
tice account for the staggered in-plane order. Hence, the
expectation value of a spin can be written in the following
way:

〈�SA,B(J̄)〉 =
∣∣∣〈�SA,B(J̄)〉

∣∣∣

⎛

⎝
sin ϕA,B(J̄)

0
cosϕA,B(J̄)

⎞

⎠ . (11)

The single-spin problem of equation (8) can be readily
solved, yielding the mean-field equations:

cosϕA,B(J̄) = �ez · [ �B + �mA,B(J̄)]

| �B + �mA,B(J̄)| , (12a)

and

∣∣∣〈�SA,B〉
∣∣∣ (J̄) = s tanh

∣∣∣ �B + �mA,B(J̄)
∣∣∣

kBT/s
. (12b)

The amplitude equation (12b) has been written for a spin
with two states ±s, appropriate for quantum spins s =
1/2 – this will be used in the numerical calculations. For
continuous classical spins the tanh() needs to be replaced
by a Brillouin function as usual.

In the case of P (J̄) = δ(J̄ − J̄0) and f(J̄1, J̄2) = J̄0 the
mean-field equations (9, 12) reduce to the self-consistency
equation of the familiar Weiss mean-field theory, with
J̄0 = zJ for a Hamiltonian with a nearest-neighbor cou-
pling strength J and a coordination number of z.

2.2 Magnetic anisotropy

In this paper we consider the formally simplest source of
magnetic anisotropy, namely an anisotropic exchange in-
teraction of easy-axis type (the behavior in the presence
of a Dshyaloshinski-Moriya interaction is expected to be
similar). Thus, in the Hamiltonian we perform the replace-
ment

Jij
�Si · �Sj → Jij

[
β(Sx

i Sx
j + Sy

i Sy
j ) + Sz

i Sz
j

]
(13)

with an anisotropy constant β < 1; we keep the coupling
to the external field as �B ·�S. We note that in the context of

impurity-induced magnetism, e.g., in TlCuCl3 some com-
plications arise (which we will ignore here): the anisotropy
of the effective interaction will depend on the external field
and the interaction itself; furthermore the form of the field
coupling will be modified, leading to an anisotropic g ten-
sor.

The anisotropy according to equation (13) requires the
following replacement in the mean-field equations (12):

�mA,B →
⎛

⎝
βmx

A,B

βmy
A,B

mz
A,B

⎞

⎠ (14)

where mxy and mz denote the components perpendicular
and parallel to the easy axis.

2.3 Choice of input parameters

The described mean-field theory requires the coupling dis-
tribution P (J̄), equation (3), and the interaction function
f(J̄1, J̄2), equation (4), as input. Both functions are given
by the underlying microscopic model. We have numeri-
cally determined P (J̄) and f(J̄1, J̄2) for an effective model
of impurity-induced order in quantum paramagnets, equa-
tion (1), as described in the Appendix.

For the actual mean-field calculations we found it more
convenient to use plausible model (i.e. fitting) functions in-
stead. However, a difficulty arises here: P (J̄) and f(J̄1, J̄2)
cannot be chosen independently, because the normaliza-
tion conditions (5) cannot be easily fulfilled while pre-
serving the symmetry w.r.t. J̄1 ↔ J̄2. We have therefore
resorted to the following construction. From an arbitrary
symmetric “generating” function g(J̄1, J̄2) we define the
functions P (J̄) and f(J̄1, J̄2) according to:

P (J̄) =
a

J̄

∫
dJ̄2g(J̄ , J̄2) (15)

and

f(J̄1, J̄2) = a
g(J̄1, J̄2)

P (J̄1)P (J̄2)
. (16)

Choosing the normalization factor as

a−1 =
∫

dJ̄1
1
J̄1

∫
dJ̄2g(J̄1, J̄2), (17)

all normalization conditions are fulfilled.
As detailed in the Appendix, in vacancy-doped mag-

nets the function P (J̄) will be peaked at a value which
increases with impurity concentration, and it will be in-
creasingly asymmetric at low concentrations, with a tail
to higher J̄ . Thus, among others, we have employed the
following generating functions g(J̄1, J̄2).

g(J̄1, J̄2) = exp
(
− (ln(J̄1) − µL)2

2σ2
L

)

× exp
(
− (ln(J̄2) − µL)2

2σ2
L

)
exp

(
− (J̄1 − J̄2)2

2σ2
2

)

× θ(J̄max − J̄1)θ(J̄max − J̄2) (18)
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Fig. 1. Model functions for the coupling-sum distribution
P (J̄) obtained from different generating functions g(J̄1, J̄2):
(a) lognormal-like distribution from equation (18), with the
parameters σ2 = 0.699, µL = −0.171, σL = 1.3, and J̄max =
4.317. (b) Gauss-like distribution from equation (19), with
the parameters µ1 = 0.59, σ1 = 0.289, σ2 = 0.193, and
J̄max = 1.929. In both cases,

∫
dJ̄P (J̄) = 1.

generates a Lognormal-like distribution P (J̄) which cap-
tures the coupling distribution for a small impurity con-
centration. In contrast,

g(J̄1, J̄2) = J̄1J̄2 exp
(
− (J̄1 − µ1)2

2σ2
1

)
exp

(
− (J̄2 − µ1)2

2σ2
1

)

× exp
(
− (J̄1 − J̄2)2

2σ2
2

)
θ(J̄max − J̄1)θ(J̄max − J̄2)

(19)

leads to a Gauss-like distribution P (J̄), corresponding to
higher impurity concentrations. The µi and σi are free
parameters. Examples for the resulting P (J̄) are shown
in Figure 1; here and in the following the J̄ values are
scaled such that the mean value of J̄ is unity. In Figure 8
below we show P (J̄) results of the numerical simulations
for comparison.

To model an easy-axis situation, we have chosen the
anisotropy parameter β = 0.9.

3 Phase diagrams

3.1 Symmetries and phases

We will restrict our attention to magnetic fields paral-
lel to the easy axis in which case interesting spin-flop
physics arises. Then, the symmetry of the antiferromag-
netic Hamiltonian (10) in the presence of a field is U(1)
×Z2 (whereas for B = 0 we have U(1) ×Z2 ×Z2 which be-
comes SU(2) ×Z2 in the absence of exchange anisotropy).
Here we have assumed a unit cell size of 2 sites, and the
Z2 symmetry corresponds to the exchange of the two sub-
lattices.

The possible phases are easily enumerated: (i) an Ising
phase, where spins on the A (B) sublattice point preferen-
tially up (down). This breaks the Z2 symmetry, but leaves
the U(1) rotations about the z axis intact; (ii) a canted
phase, where the spins order spontaneously perpendicular
to the field, and have a finite component in the field di-
rection (equal for both sublattices) as well. Z2 and U(1)
are broken, but a combination of sublattice exchange and
180o rotation is an intact Z2 symmetry; (iii) a mixed phase

where Z2 and U(1) are fully broken; (iv) a disordered
phase with no symmetry breaking. For non-zero field the
spins point in the field direction only.

The order parameters are the components of the
staggered magnetization parallel and perpendicular to
the direction of the applied magnetic field, Mstagg,z and
Mstagg,xy. Further, the ordered phases (i)–(iii) can be
nicely characterized by the angles ϕ, equation (11). With-
out quenched disorder, i.e., for P (J̄) = δ(J̄ − J̄0), we have
(i) Ising: ϕA = 0, ϕB = π; (ii) canted: 0 < ϕB = −ϕA < π;
(iii) mixed: ϕA < 0, ϕB > 0, |ϕA| �= |ϕB|. In the disor-
dered case with broad P (J̄), the angles become functions
of J̄ , with examples for ϕA,B(J̄) shown in Figure 2.

3.2 Numerical iteration of the mean-field equations

For given functions P (J̄) and f(J̄1, J̄2) and fixed values of
applied magnetic field �B, temperature T , and anisotropy
constant β one can iterate the mean-field equations (9, 12),
using a linear discretization for the J̄ values. The ini-
tial distributions for the angles ϕA,B(J̄) and amplitudes
|〈�SA,B〉| could be chosen random in principle; we found it
more convenient to employ distributions corresponding to
perfect Ising or XY order instead. The mean fields are cal-
culated from equation (9); new amplitudes are obtained
from equation (12b). Some care is required with the angle
equation (12a) in the case of an Ising initial configuration:
in addition to equation (12a) we used an update scheme
where spins on the sublattice B flipping from ϕB = π to
ϕB = 0 are set to ϕB = π/2 by hand in order to mix the
symmetry breakings.

These different initial conditions and different update
schemes lead to potentially different fixed-point distribu-
tions after convergence is reached. These correspond to
different local minima in the free-energy landscape; com-
parison of the free energies then yields the stable phase.

3.3 Phase diagrams from mean-field theory

In Figures 3, 4 we show representative phase diagrams
for the disordered easy-axis antiferromagnet with a longi-
tudinal field, obtained from solving the mean-field equa-
tions (9, 12). At zero field, the Ising order, present at
low temperatures T , is destroyed at a continuous tran-
sition to a paramagnetic phase. Applying a field to the
Ising phase drives various transitions, resulting in a canted
phase at intermediate fields and finally a field-polarized
(disordered) phase at large field. The main difference to
the text-book antiferromagnet is the presence of a mixed
phase. The conventional first-order spin-flop transition
is split into two transitions at low T : at some small
field, there is a continuous transition from the Ising to
a mixed phase, where an in-plane staggered magnetiza-
tion Mstagg,xy perpendicular to the field develops. Only
at a larger field, the Ising order measured by Mstagg,z is
destroyed, leading to a spin-flop transition into a canted
phase, see Figures 5, 6. The origin of this behavior lies
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Fig. 2. (Color online) Angle configurations ϕ(J̄) occurring in the ordered phases of the antiferromagnet with field parallel to
the easy axis, with blue/red (dark/gray) showing ϕA/ϕB . (a) Ising phase; (b) mixed phase; (c) canted phase. The evolution
from (a) to (c) represents the behavior at low temperatures upon increasing the field, see Figures. 3, 4 below.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

0
0

B/s

T
/s

2

Ising Canted

Mixed

Para

BP

Fig. 3. Temperature-field phase diagram of a disordered easy-
axis antiferromagnet, obtained from the present mean-field the-
ory, for the Lognormal-like distribution of coupling constants
P (J̄) as shown in Figure 1a. The calculation was done for
spins with eigenvalues ±s, hence the axes are scaled by ap-
propriate powers of s. First-order transitions (thick lines) were
determined from crossing points of the free energy, whereas
second-order transitions were obtained from extrapolations of
the order parameters. BP is a bi-critical point. Magnetization
data along the dotted gray lines will be shown in Figures. 5, 7
below.

in the broadly distributed couplings: Already for small
fields, weakly coupled spins with J̄ � B cannot sus-
tain the zero-field Ising order and flip in the field direc-
tion, while for strongly coupled spins (J̄ � B) Ising or-
der is favored. At low T , spins with J̄ ≈ B reach their
lowest-energy state by canting – this results in an overall
mixed phase and can be nicely seen in Figure 2b. (How-
ever, at elevated temperatures the in-plane mean-field
from these spins alone is not sufficient to establish a mixed
phase.) At the spin-flop transition (mixed→canted at low
T , Ising→canted at higher T ), the spins with the largest
couplings loose their Ising order. The evolution of the an-
gle distributions ϕA,B(J̄) with increasing field at low T is
shown in Figure 2.

Note that the part of the phase transition line between
Ising and mixed phases at small T and B (dashed) is diffi-
cult to extract numerically for a linear discretization of J̄ .
However, by a comparison of energies it is easy to prove
that at T = 0, B > 0 the Ising phase is always unstable

Fig. 4. Temperature-field phase diagram as in Figure 3, but
for the Gauss-like distribution P (J̄) shown in Figure 1b. (CE
is a critical endpoint.)

towards the mixed phase for distributions P (J̄) which are
non-zero for arbitrarily small J̄ .

The two phase diagrams in Figures 3, 4 differ in the
extensions of the mixed phase, and in the character of the
phase transition line between mixed and canted phase (see
below). Clearly, the deviations from the textbook spin-flop
behavior of non-disordered antiferromagnets are most pro-
nounced for broad distributions P (J̄).

Both the Néel temperature TN and the critical field
Bc where long-range order is destroyed, scale with the
mean value of the exchange constant (which is set to unity
in our calculations). Similarly, the flop field Bflop scales
as (1 − β)1/2 times the mean exchange. Furthermore, an
asymmetric distribution P (J̄) as the one in Figure 1a leads
to a larger TN , Bc, Bflop compared to a symmetric one
with the same mean J̄ , the reason being that the scales
are primarily determined by the spins with large J̄ .

4 Phase transitions and critical properties

4.1 Magnetizations and critical exponents

The Figures 5, 6 show curves for the staggered magneti-
zations (Mstagg,xy and Mstagg,z) as well as the total mag-
netization M , along the gray dotted lines in the phase
diagrams in Figures 3, 4. The role of Mstagg,xy and Mstagg,z

as order parameters can be clearly seen.
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Fig. 5. (Color online) Magnetization curves for the
Lognormal-like distribution P (J̄), Figure 1a, at (a) T/s2 =
0.435 and (b) T/s2 = 2.177. The red (dashed) part indicates
the jump at the first-order transition.

Figure 7 shows the total staggered magnetization vs.
temperature for both coupling-sum distributions. The
transition to the disordered phase at high T (or B) is al-
ways continuous. The corresponding order-parameter ex-
ponent β, defined through Mstagg ∝ (Tc − T )β, should
be 1/2 in conventional mean-field theory. Interestingly,
Figure 7a shows an overall behavior very different from
this standard square-root law. This is again due to the
broadly distributed couplings: close to Tc the magnetiza-
tion is effectively only carried by a small fraction of the
spins with large J̄ – note that the distribution P (J̄) cor-
responding to Figure 7a has a pronounced tail at larger
J̄ . We note that asymptotically close to the phase tran-
sition standard mean-field behavior is restored within the
present approach, with exponent β = 1/2.

4.2 Spin-flop transition

In a non-disordered easy-axis antiferromagnet, a
first-order spin-flop transition from an Ising to a
canted phase occurs upon increasing the field, leading to
a jump in the total magnetization.

In the present situation with quenched disorder, a
mixed phase with both Mstagg,xy and Mstagg,z non-zero
occurs at low temperatures. The spin-flop transition
splits; for small disorder (a narrow distribution P (J̄))
the mixed→canted transition remains of first order, but
becomes second-order at larger disorder, whereas the
Ising→mixed transition is always continuous. As the
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Fig. 6. (Color online) As Figure 5, but for the Gauss-like
distribution P (J̄), Figure 1b, at (a) T/s2 = 0 and (b) T/s2 =
0.675.
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Fig. 7. Staggered magnetization for (a) the Lognormal-like
distribution P (J̄), Figure 1a, at B/s = 0.209, and (b) the
Gauss-like distribution P (J̄), Figure 1b, at B/s = 0.189.

mixed phase only exists at low T , the conventional
first-order spin-flop transition is restored at elevated tem-
peratures. This has the remarkable consequence that the
jump in the magnetization is most pronounced at inter-
mediate T , namely at the position of the critical end point
or the bicritical point, respectively (see Figs. 5, 6). In gen-
eral, the magnetization jump is larger in situations with
less disorder because the collective spin flop is carried by
a larger fraction of spins here.

5 Relation to vacancy-doped magnets

In the previous sections, we have described a gen-
eral mean-field theory for disordered non-frustrated
antiferromagnets. We now discuss the applicability to
impurity-induced magnetic order in quantum paramag-
nets.
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5.1 Experiments

The low-energy physics of Mg-doped TlCuCl3 may be
expected to be well described by a Hamiltonian of the
form (1), provided that the impurity concentration is
small. Magnetization measurements [7] have indicated the
presence of a spin-flop transition at 1.8K for fields paral-
lel to the easy axis [2, 0, 1] at a field of approximately
0.35T, significantly below the field corresponding to the
bulk gap, 6T. Interestingly, the spin-flop field seems to
be almost independent of the impurity concentration (in
the measured range of 0.8–2.5%). Our theory does not of-
fer an easy explanation for that: as discussed above, the
spin-flop field Bflop is roughly proportional to the mean
exchange (for fixed anisotropy parameter β), which would
result in a concentration dependence of Bflop. Within the
effective model (1), it is hard to envision a mechanism
leading to a concentration-independent flop field, there-
fore we speculate that correlations between the impurities
beyond this effective model play a role here. We also con-
sider it possible that Bflop will actually decrease for im-
purity concentrations smaller than the ones measured. In
this context we note that the experiments of reference [22]
mapped out the phase diagram for TlCuCl3 doped with
1% Mg and showed the zero-field impurity-induced or-
dered phase to be continuously connected to the high-field
bulk ordered phase. Together with recent theoretical stud-
ies [16,23], this suggests that the impurity and bulk energy
scales are not well separated there, i.e., the impurity con-
centration is too high to allow for a description using the
effective model (1).

Further magnetization measurements on Mg-doped
TlCuCl3 would also be interesting regarding the temper-
ature dependence of the spin-flop physics: Our theory
predicts interesting behavior for very low temperatures,
where the spin-flop transition should split. This requires
measurements down to e.g. 1/10th of the ordering temper-
ature TN ; the experiments of reference [7] have T � TN/2.

5.2 Numerical results from Quantum Monte Carlo
simulations

Numerical simulations using Quantum Monte Carlo tech-
niques can go beyond the effective model (1) and study
the full system, i.e., quantum paramagnet plus vacan-
cies. Those calculations have been reported in refer-
ences [14–17], but all were restricted to the spin-isotropic
situation. These simulations mapped out the complete
phase diagram, with distinct low-field and high-field or-
dered phases. Among the interesting aspects are the oc-
currence of Bose glass phases near the bulk field-ordered
phase [16], and of a quantum disordered phase at in-
termediate fields where impurity-induced transverse or-
der is destroyed and the impurity moments appear to
form a random-singlet-like phase [17]. Clearly, these prop-
erties rely on the one hand on the quantum nature of
the impurity-induced spin-1/2 moments and on the other
hand on localization effects, both not captured by our
mean-field approach. Quantum Monte Carlo calculations

for the spin-anisotropic case studied by us would be
interesting, but may be difficult due to the small energy
scales involved in the spin-flop physics.

6 Conclusions

We have proposed a mean-field theory for strongly disor-
dered magnets, which takes into account the broad dis-
tribution of energy scales in the system. Parameterizing
the spins by their sum of coupling constants, equivalent
to the exchange field in a perfectly ordered state, yields a
continuous set of mean-field equations. We have applied
the formalism to a model for impurity-induced order in
spin-gap quantum magnets, and derived detailed phase
diagrams as function of temperature and external field.
We have shown that the conventional first-order spin-flop
transition generically splits at low temperatures, leaving
room for a mixed phase with both transverse and longi-
tudinal order.

We envision our approach of continuous mean fields
to be applicable to a number of interesting problems
involving strong disorder, like magnetic ordering in di-
lute magnetic semiconductors [24], charge ordering in
the presence of strong pinning, or electronic models
treated within modifications of dynamical mean-field the-
ory (DMFT) [25].

We thank T. Roscilde, W. Uschel, X. Wan, and P. Wölfle for
discussions. This research was supported by the DFG Center
for Functional Nanostructures and the Virtual Quantum Phase
Transitions Institute (Karlsruhe).

Appendix: Coupling constants
for impurity-induced moments in paramagnets

Our mean-field theory requires the knowledge of the dis-
tribution of the coupling-constant sums, P (J̄), and the
interaction function f(J̄1, J̄2). We have numerically deter-
mined these functions from an effective Hamiltonian for
the impurity-induced moments of the form (1).

The effective interaction between two impurity spins
(�si,j), coupled to two different spins (�Si,j) of a bulk system
according to

H = Hbulk + K
(

�Si · �si + �Sj · �sj

)
(A.1)

can be determined in perturbation theory in K. In lowest
order and in the static approximation, it is given by the
ω = 0 bulk susceptibility:

Jα
eff = K2〈〈Sα

i ; Sα
j 〉〉(ω = 0). (A.2)

For vacancy-induced moments, K can be approximated
by a bulk exchange coupling.

To be specific, consider a bulk system consisting
of dimers on a d-dimensional hypercubic lattice, with
intra-dimer (inter-dimer) coupling J⊥ (J‖). Using a
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note that the rather large values of J̄ arise from the inaccurate
short-range behavior of Eq. (A.3).)

bond-operator formalism in the linearized (harmonic) ap-
proximation [26], we find for the effective coupling in the
long-distance limit:

Jeff = −K2

2J‖
(−1)ζ(−1)rξ(3−d)/22(d−1)/2π(d+1)/2

× r−(d−1)/2 exp(−r/ξ) (A.3)

where r denotes the distance between the impurity spins,
(−1)r accounts the alternating sign of the interaction, and
ζ = 0 (1) for spins i, j on the same (on different) sites
of the dimer pairs. Note that the asymptotic behavior
r−(d−1)/2 exp(−r/ξ) is generic, whereas the concrete value
of ξ and the prefactor in (A.3) depend on the level of ap-
proximation used; in our case ξ2 = J‖/(J⊥ − 2dJ‖). For
the purpose of our numerical simulation, we will employ
equation (A.3) with K = J‖ for all distances r – this will
overestimate couplings at small r. The sign of Jeff leads to
a non-frustrated system on a bipartite lattice.

The simulation is done by randomly placing impuri-
ties on sites of a bilayer square lattice (i.e. d = 2), cal-
culating P (J̄) and f(J̄1, J̄2), Equations (3, 4), from the
effective coupling constants (A.3), and averaging the re-
sult over several impurity configurations. The bilayer sys-
tem is assumed to be in its quantum disordered phase,
close to the magnetic ordering transition. In the linearized
bond-operator approach, the phase transition takes place
at J‖/J⊥ = 1/4; we choose in the following J‖/J⊥ = 0.249,
corresponding to a correlation length of ξ ≈ 7.9. Figure 8
shows the resulting P (J̄) for two different impurity con-
centrations: In the low-concentration limit, the distribu-
tion is strongly asymmetric, with a tail to high energies.
(Note that in this limit analytical results are available as
well, see e.g. Ref. [23].)
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